이 영역을 누르면 첫 페이지로 이동
Yphy 블로그의 첫 페이지로 이동

Yphy

페이지 맨 위로 올라가기

Yphy

머신러닝 개발 블로그

Asymmetric Loss

  • Yphy
Asymmetric Loss For Multi-Label Classification 리뷰

Asymmetric Loss For Multi-Label Classification 리뷰

2021.12.20
Asymmetric Loss For Multi-Label Classification 안녕하세요 오늘 리뷰 할 논문은 Asymmetric Loss For Multi-Label Classification로 줄여서 ASL Loss라고 합니다. 6개월 전쯤에 패션 스타일 데이터의 multi label 문제를 풀다가 paperwithcode 에서 당시 2위로 높은 순위를 기록하고 있길래 적용을 했는데 좋은 효과를 보아서 소개하려고 합니다. 저도 그랬지만 주위에서 Data imbalance 문제를 겪는 문들을 많이 봤습니다. 보통은 upsampling을 쓰는 smote 기법이나 undersampling 등을 많이 사용하지만 크게 효과를 보지는 못하는 것 같습니다. 그중에서도 focal loss가 좀 더 좋다고 알려..
  • 최신
    • 1
  • 다음

정보

Yphy 블로그의 첫 페이지로 이동

Yphy

  • Yphy의 첫 페이지로 이동

검색

메뉴

  • 홈
  • 태그
  • 방명록

카테고리

  • 분류 전체보기 (25)
    • causal inference (1)
    • Graph (6)
    • machine learning (15)
      • Article review (10)
    • 기타 (3)
      • Kaggle (1)

최근 글

인기 글

댓글

공지사항

  • 공지 - 소개

아카이브

태그

  • hybrid transformer
  • Petfinder
  • Vision Transformer
  • Causal Inference
  • faster rcnn
  • node embedding
  • Object Detection
  • multi label classification

나의 외부 링크

정보

yphy의 Yphy

Yphy

yphy

블로그 구독하기

  • 구독하기
  • RSS 피드

방문자

  • 전체 방문자
  • 오늘
  • 어제

티스토리

  • 티스토리 홈
  • 이 블로그 관리하기
  • 글쓰기
Powered by Tistory / Kakao. © yphy. Designed by Fraccino.

티스토리툴바